X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[00902252]一种基于随机游走度惩罚机制的社交网络好友预测方法

交易价格: 面议

所属行业: 网络

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN202010893847.2

交易方式: 其他

联系人:

所在地:浙江杭州市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

一种基于随机游走度惩罚机制的社交网络好友预测方法,基于社交网络用户数据构建社交网络模型,通过改变随机游走采样概率来获得游走序列,在随机游走序列中依次选取用户,作为当前用户,设定滑动窗口,从中依次选取用户,作为训练的正样本,通过函数获得负采样集合,在利用节点与负样本嵌入的当前相似度作为负采样概率指标,得到训练的负样本,使用损失函数做损失。所得到的嵌入向量做内积,即为用户之间的相似度,相似度较高的即为预测的好友。本发明考虑了用户度大小以及当前的嵌入向量表示,提高了好友预测的准确性。
一种基于随机游走度惩罚机制的社交网络好友预测方法,基于社交网络用户数据构建社交网络模型,通过改变随机游走采样概率来获得游走序列,在随机游走序列中依次选取用户,作为当前用户,设定滑动窗口,从中依次选取用户,作为训练的正样本,通过函数获得负采样集合,在利用节点与负样本嵌入的当前相似度作为负采样概率指标,得到训练的负样本,使用损失函数做损失。所得到的嵌入向量做内积,即为用户之间的相似度,相似度较高的即为预测的好友。本发明考虑了用户度大小以及当前的嵌入向量表示,提高了好友预测的准确性。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5