X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[00315035]一种冷负荷预测的情景-聚类方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201310445573.0

交易方式: 技术转让 技术转让 技术入股

联系人: 厦门立德软件公司

进入空间

所在地:

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明涉及一种冷负荷预测的情景-聚类方法。包括如下步骤:1)生成情景聚类条件;2)基于先验知识的情景粗聚类;3)基于智能算法的自动情景细聚类;4)根据细聚类结果生成情景分类器;5)根据细聚类结果生成针对性的有监督学习预测模型;6)利用分类器和针对性的预测模型进行冷负荷预测。本发明利用情景聚类的方法对冷负荷相关历史数据进行处理,根据不同情景的特点优化选择有监督学习预测算法,并减少了算法的训练样本数,以此提高了预测的准确度和精度,且减少了预测模型的训练时间和预测时间,达到细粒度预测的目标。本发明的方法实现简单,实用性高,泛化能力和推广能力强。
本发明涉及一种冷负荷预测的情景-聚类方法。包括如下步骤:1)生成情景聚类条件;2)基于先验知识的情景粗聚类;3)基于智能算法的自动情景细聚类;4)根据细聚类结果生成情景分类器;5)根据细聚类结果生成针对性的有监督学习预测模型;6)利用分类器和针对性的预测模型进行冷负荷预测。本发明利用情景聚类的方法对冷负荷相关历史数据进行处理,根据不同情景的特点优化选择有监督学习预测算法,并减少了算法的训练样本数,以此提高了预测的准确度和精度,且减少了预测模型的训练时间和预测时间,达到细粒度预测的目标。本发明的方法实现简单,实用性高,泛化能力和推广能力强。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5