X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[00274998]基于多示例多标记学习的数字图像标注方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201310084956.X

交易方式: 技术转让 技术转让 技术入股

联系人: 南京大学

进入空间

所在地:江苏南京市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明针对数字图像往往具有复杂语义,而基于单示例的技术无法对其进行有效表达和学习等技术问题,公开了一种基于多示例多标记学习的数字图像标注方法,包括:初始化标注模型;从数据集合中随机选择一幅图像以及该图像的一个相关标记,并确定该标记的代表示例;通过随机采样获得一个排在相关标记前面的不相关标记,并确定该不相关标记的代表示例;针对该图像,相关标记以及不相关标记构成的三元组进行梯度下降更新模型。本发明利用随机梯度下降算法进行在线学习,大大降低了时间和内存开销,从而既保证了标注的精确度,又提高了标注效率。
本发明针对数字图像往往具有复杂语义,而基于单示例的技术无法对其进行有效表达和学习等技术问题,公开了一种基于多示例多标记学习的数字图像标注方法,包括:初始化标注模型;从数据集合中随机选择一幅图像以及该图像的一个相关标记,并确定该标记的代表示例;通过随机采样获得一个排在相关标记前面的不相关标记,并确定该不相关标记的代表示例;针对该图像,相关标记以及不相关标记构成的三元组进行梯度下降更新模型。本发明利用随机梯度下降算法进行在线学习,大大降低了时间和内存开销,从而既保证了标注的精确度,又提高了标注效率。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5