X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[00274105]基于高斯权值‑混合粒子滤波的疲劳裂纹扩展预测方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201610979235.9

交易方式: 技术转让 技术转让 技术入股

联系人: 南京航空航天大学

进入空间

所在地:江苏南京市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

摘要:本发明公开了一种基于高斯权值‑混合粒子滤波的疲劳裂纹扩展预测方法,属于故障预测与健康管理技术领域。本发明提出了一种高斯权值‑混合粒子滤波算法,其根据获得的裂纹长度观测值定义一个观测概率密度,以该观测概率密度和先验转移概率密度的线性组合作为粒子滤波算法的重要性密度函数,并且通过与先验估计之间的高斯权值作为从观测概率密度中采样得到的粒子的权值,然后与基于主动导波的裂纹监测方法相结合,以实现疲劳裂纹扩展的准确预测。本发明所提出的高斯权值‑混合粒子滤波算法从重要性密度函数中采样时,同时考虑了先验信息和观测信息,降低了对准确定义疲劳裂纹扩展状态方程的依赖,在结构的疲劳裂纹扩展预测方面具有广泛的应用前景。
摘要:本发明公开了一种基于高斯权值‑混合粒子滤波的疲劳裂纹扩展预测方法,属于故障预测与健康管理技术领域。本发明提出了一种高斯权值‑混合粒子滤波算法,其根据获得的裂纹长度观测值定义一个观测概率密度,以该观测概率密度和先验转移概率密度的线性组合作为粒子滤波算法的重要性密度函数,并且通过与先验估计之间的高斯权值作为从观测概率密度中采样得到的粒子的权值,然后与基于主动导波的裂纹监测方法相结合,以实现疲劳裂纹扩展的准确预测。本发明所提出的高斯权值‑混合粒子滤波算法从重要性密度函数中采样时,同时考虑了先验信息和观测信息,降低了对准确定义疲劳裂纹扩展状态方程的依赖,在结构的疲劳裂纹扩展预测方面具有广泛的应用前景。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5