[00271284]一种向量约束嵌入转换的知识图谱推理方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201610858221.1
交易方式:
技术转让
技术转让
技术入股
联系人:
厦门理工学院
进入空间
所在地:福建厦门市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
摘要:本发明公开一种向量约束嵌入转换的知识图谱推理方法,步骤是步骤1,获取知识图谱中每个关系和实体的语义类型;步骤2,将实体集和关系集嵌入到低维连续向量空间,并进行规范化;步骤3,将规范化后的实体集与关系集,按照原来的三元组对应关系映射到相应的向量矩阵中;步骤4,在低维连续空间中,计算知识图谱中每个三元组的得分损失函数值,构造训练模型;步骤5,对满足关系语义类型的被打乱的三元组进行训练模型的优化;步骤6,步骤5循环至满足循环结束条件;步骤7,对下一个三元组进行计算,重复步骤4至步骤6,直至全部三元组都计算完成,输出训练模型的实体集和关系集。此种推理方法可提高知识发现的推理准确性,提高预测精度。
摘要:本发明公开一种向量约束嵌入转换的知识图谱推理方法,步骤是步骤1,获取知识图谱中每个关系和实体的语义类型;步骤2,将实体集和关系集嵌入到低维连续向量空间,并进行规范化;步骤3,将规范化后的实体集与关系集,按照原来的三元组对应关系映射到相应的向量矩阵中;步骤4,在低维连续空间中,计算知识图谱中每个三元组的得分损失函数值,构造训练模型;步骤5,对满足关系语义类型的被打乱的三元组进行训练模型的优化;步骤6,步骤5循环至满足循环结束条件;步骤7,对下一个三元组进行计算,重复步骤4至步骤6,直至全部三元组都计算完成,输出训练模型的实体集和关系集。此种推理方法可提高知识发现的推理准确性,提高预测精度。