[00268981]一种基于半监督学习相结合的图像分割方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201610321142.7
交易方式:
技术转让
技术转让
技术入股
联系人:
陕西师范大学
进入空间
所在地:陕西西安市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
摘要:本发明公开了一种基于半监督学习相结合的图像分割方法,包括如下步骤:获取待分割图像的梯度图像,并对待分割图像依次进行压缩、锐化、二值化处理和距离变换处理,获取待分割图像的距离地形图;提取所得距离变换图中每个连通区域的灰度值最大的一点或点集,作为前景标记;对所得的距离地形图进行分水岭变换,将得到的分水岭脊线作为背景标记;屏蔽所述梯度图像中的局部极小值,根据获取的前景标记和背景标记标记所述梯度图像的局部极小值,得到所述修正后的梯度图像;然后通过半监督学习方法进行多角度数据的获取、预测矩阵的建立、训练模型的构建以及图像的分割。本发明能提高图像分割的精度。
摘要:本发明公开了一种基于半监督学习相结合的图像分割方法,包括如下步骤:获取待分割图像的梯度图像,并对待分割图像依次进行压缩、锐化、二值化处理和距离变换处理,获取待分割图像的距离地形图;提取所得距离变换图中每个连通区域的灰度值最大的一点或点集,作为前景标记;对所得的距离地形图进行分水岭变换,将得到的分水岭脊线作为背景标记;屏蔽所述梯度图像中的局部极小值,根据获取的前景标记和背景标记标记所述梯度图像的局部极小值,得到所述修正后的梯度图像;然后通过半监督学习方法进行多角度数据的获取、预测矩阵的建立、训练模型的构建以及图像的分割。本发明能提高图像分割的精度。