X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[00258841]传感器网络中基于多维分解的隐私数据汇聚方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201610005312.0

交易方式: 技术转让 技术转让 技术入股

联系人: 西安交通大学

进入空间

所在地:陕西西安市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明公开了一种传感器网络中基于多维分解的隐私数据汇聚方法。在传感器网络中,一般基于拉普拉斯噪声机制的差分隐私方法可能会因为较大的全局敏感度造成过扰动现象,从而破坏汇聚数据的效用性。本发明提出的方法通过将单一数据流分解为指数权重的多维数据流,并在每一维数据流上根据每一维的局部敏感度和隐私预算添加独立噪声实现差分隐私保护。相比于一般的拉普拉斯噪声机制下的汇聚过程,该方法在保证相同程度用户隐私的同时提供更好的数据效用性。
本发明公开了一种传感器网络中基于多维分解的隐私数据汇聚方法。在传感器网络中,一般基于拉普拉斯噪声机制的差分隐私方法可能会因为较大的全局敏感度造成过扰动现象,从而破坏汇聚数据的效用性。本发明提出的方法通过将单一数据流分解为指数权重的多维数据流,并在每一维数据流上根据每一维的局部敏感度和隐私预算添加独立噪声实现差分隐私保护。相比于一般的拉普拉斯噪声机制下的汇聚过程,该方法在保证相同程度用户隐私的同时提供更好的数据效用性。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5