[00258769]基于多级卷积神经网络的全局-局部优化模型及显著性检测算法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201610019206.8
交易方式:
技术转让
技术转让
技术入股
联系人:
西安交通大学
进入空间
所在地:陕西西安市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明提出了一种基于多级卷积神经网络的显著性检测算法,包括使用大感受野的全局估计模型做全局显著性估计;训练全局估计模型时,使用全连接层作为输出层训练并初始化部分卷积层参数;使用多个交替的卷积层和升采样层替换全连接层,训练并得到更优的全局显著性估计图;使用感受野小、输出图片尺寸大的局部卷积神经网络融合全局和局部信息,得到高质量的显著性图。经过局部卷积神经网络的处理,可以将原始图像作为模型的输入,最终的输出的结果不仅与原始输入图像具有相同大小,并且更加清晰。提供的基于多级卷积神经网络的显著性检测算法,相比传统方法,拥有更高的准确性,能更准确找到显著目标的同时,目标轮廓也更加清晰。
本发明提出了一种基于多级卷积神经网络的显著性检测算法,包括使用大感受野的全局估计模型做全局显著性估计;训练全局估计模型时,使用全连接层作为输出层训练并初始化部分卷积层参数;使用多个交替的卷积层和升采样层替换全连接层,训练并得到更优的全局显著性估计图;使用感受野小、输出图片尺寸大的局部卷积神经网络融合全局和局部信息,得到高质量的显著性图。经过局部卷积神经网络的处理,可以将原始图像作为模型的输入,最终的输出的结果不仅与原始输入图像具有相同大小,并且更加清晰。提供的基于多级卷积神经网络的显著性检测算法,相比传统方法,拥有更高的准确性,能更准确找到显著目标的同时,目标轮廓也更加清晰。