X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[01899966]一种基于灰关联回归支持向量机的风电机组状态预测模型建立方法

交易价格: 面议

所属行业: 发电机

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201510395925.5

交易方式: 技术转让

联系人:

进入空间

所在地:

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明公开了一种基于灰关联回归支持向量机的风电机组状态预测模型建立方法,包括确定输入变量、回归支持向量机训练建模和预测阶段。

标准支持向量机状态预测模型输入向量多、数据冗余、预测精度不佳、模型训练时间长等问题,本发明提出了一种基于灰关联-回归支持向量机的风电机组状态预测模型建立方法,为保障机组安全运行、降低非计划停机次数提供坚实的技术支持。

对传统方法进行改进,将两种方法巧妙结合,建立了状态预测模型,以简单实用的方法实现了风力发电机组状态的预测,由于对各监测项目进行了灰关联度分析,筛选出了主因素,剔除掉不相关信息,因此本发明预测精度高、模型训练时间短、切实可行。

本发明公开了一种基于灰关联回归支持向量机的风电机组状态预测模型建立方法,包括确定输入变量、回归支持向量机训练建模和预测阶段。

标准支持向量机状态预测模型输入向量多、数据冗余、预测精度不佳、模型训练时间长等问题,本发明提出了一种基于灰关联-回归支持向量机的风电机组状态预测模型建立方法,为保障机组安全运行、降低非计划停机次数提供坚实的技术支持。

对传统方法进行改进,将两种方法巧妙结合,建立了状态预测模型,以简单实用的方法实现了风力发电机组状态的预测,由于对各监测项目进行了灰关联度分析,筛选出了主因素,剔除掉不相关信息,因此本发明预测精度高、模型训练时间短、切实可行。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5