[01899202]一种多尺度逐步累加的卷积神经网络学习方法
交易价格:
面议
所属行业:
人工智能
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201810359791.5
交易方式:
技术转让
联系人:
进入空间
所在地:
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明涉及一种多尺度逐步累加的卷积神经网络学习方法,可广泛应用于机器视觉和人工智能领域,例如目标检测、目标分类、目标识别等。首先,本发明采用均值池化操作对输入图像构建多尺度图像金字塔;然后,将各个不同尺度的图像逐步送入卷积神经网络,让卷积神经网络随着网络深度的逐步深入,能够在多种不同尺度的图像上进行学习并进行特征逐步累加,从提高了而卷积神经网络的特征学习能力。
本发明涉及一种多尺度逐步累加的卷积神经网络学习方法,可广泛应用于机器视觉和人工智能领域,例如目标检测、目标分类、目标识别等。首先,本发明采用均值池化操作对输入图像构建多尺度图像金字塔;然后,将各个不同尺度的图像逐步送入卷积神经网络,让卷积神经网络随着网络深度的逐步深入,能够在多种不同尺度的图像上进行学习并进行特征逐步累加,从提高了而卷积神经网络的特征学习能力。