X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[01899202]一种多尺度逐步累加的卷积神经网络学习方法

交易价格: 面议

所属行业: 人工智能

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201810359791.5

交易方式: 技术转让

联系人:

进入空间

所在地:

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明涉及一种多尺度逐步累加的卷积神经网络学习方法,可广泛应用于机器视觉和人工智能领域,例如目标检测、目标分类、目标识别等。首先,本发明采用均值池化操作对输入图像构建多尺度图像金字塔;然后,将各个不同尺度的图像逐步送入卷积神经网络,让卷积神经网络随着网络深度的逐步深入,能够在多种不同尺度的图像上进行学习并进行特征逐步累加,从提高了而卷积神经网络的特征学习能力。
本发明涉及一种多尺度逐步累加的卷积神经网络学习方法,可广泛应用于机器视觉和人工智能领域,例如目标检测、目标分类、目标识别等。首先,本发明采用均值池化操作对输入图像构建多尺度图像金字塔;然后,将各个不同尺度的图像逐步送入卷积神经网络,让卷积神经网络随着网络深度的逐步深入,能够在多种不同尺度的图像上进行学习并进行特征逐步累加,从提高了而卷积神经网络的特征学习能力。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5