X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[01898782]基于LBP特征与深度学习的金针菇菇头分选识别方法

交易价格: 面议

所属行业: 网络

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201910089040.0

交易方式: 技术转让

联系人:

进入空间

所在地:

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明提供一种基于LBP特征与深度学习的金针菇菇头分选识别方法,包括:1、收集金针菇头部图片,并将所有的金针菇头部图片分为训练集和测试集;2、将训练集的金针菇头部图片进行变化,将变化前的金针菇头部图片和变化后的的金针菇头部图片作为训练数据保存于训练集中;3、提取训练数据的LBP特征a;4、利用卷积神经网络提取训练数据中的深度特征b;5、将降维后的LBP特征a和深度特征b进行融合,得到融合特征c;6、将融合特征c输入到分类器中进行分类得到训练好的模型;7、将测试集中的金针菇头部图片输入到训练好的模型得出预测值,并将预测值与真实值进行比较算出准确率。本发明提高了金针菇头部分类的准确率和效率。
本发明提供一种基于LBP特征与深度学习的金针菇菇头分选识别方法,包括:1、收集金针菇头部图片,并将所有的金针菇头部图片分为训练集和测试集;2、将训练集的金针菇头部图片进行变化,将变化前的金针菇头部图片和变化后的的金针菇头部图片作为训练数据保存于训练集中;3、提取训练数据的LBP特征a;4、利用卷积神经网络提取训练数据中的深度特征b;5、将降维后的LBP特征a和深度特征b进行融合,得到融合特征c;6、将融合特征c输入到分类器中进行分类得到训练好的模型;7、将测试集中的金针菇头部图片输入到训练好的模型得出预测值,并将预测值与真实值进行比较算出准确率。本发明提高了金针菇头部分类的准确率和效率。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5