本发明公开了一种基于门控循环单元神经网络的主动学习协同过滤方法,包括:获取用户评分数据集将其用户对商品评分矩阵转化为成时间序列数据,设置对应的门控循环单元神经网络结构;采用改进MinRating主动学习算法动态采样数据,主动选择合适的训练集,输入用户的时间序列数据到门控循环单元神经网络输入层进行训练,并将门控循环单元神经网络输出与目标值进行损失计算,根据迭代算法adma进行参数的更新;利用训练得到的神经网络模型进行协同过滤推荐,实现TopN推荐。
本发明方法在短时预测成功率、召回率、项目覆盖和用户覆盖上优于传统协同过滤算法;主动学习部分能够帮助模型快速建立,在一定程度上解决推荐系统的冷启动问题。
Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5