X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[01898242]基于三通道卷积神经网络的单幅图像超分辨率重建方法

交易价格: 面议

所属行业: 网络

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN202010523197.2

交易方式: 技术转让

联系人:

进入空间

所在地:

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明提供了图像处理领域的一种基于三通道卷积神经网络的单幅图像超分辨率重建方法,包括如下步骤:

步骤S10、获取图像的数据集,并基于所述数据集创建复数张高分辨率图像以及高分辨率图像所对应的低分辨率图像;

步骤S20、创建三通道卷积神经网络模型,并利用所述三通道卷积神经网络模型对各高分辨率图像和低分辨率图像进行训练,并生成低分辨率图像与高分辨率图像的映射关系;

步骤S30、利用均方误差损失函数对所述映射关系进行优化;

步骤S40、基于优化后的所述映射关系,将待重建的低分辨率图像输入所述三通道卷积神经网络模型,输出重建后的高分辨率图像。

本发明的优点在于:实现不增加网络深度和模型参数的前提下,极大的提升了重建图像的质量。

本发明提供了图像处理领域的一种基于三通道卷积神经网络的单幅图像超分辨率重建方法,包括如下步骤:

步骤S10、获取图像的数据集,并基于所述数据集创建复数张高分辨率图像以及高分辨率图像所对应的低分辨率图像;

步骤S20、创建三通道卷积神经网络模型,并利用所述三通道卷积神经网络模型对各高分辨率图像和低分辨率图像进行训练,并生成低分辨率图像与高分辨率图像的映射关系;

步骤S30、利用均方误差损失函数对所述映射关系进行优化;

步骤S40、基于优化后的所述映射关系,将待重建的低分辨率图像输入所述三通道卷积神经网络模型,输出重建后的高分辨率图像。

本发明的优点在于:实现不增加网络深度和模型参数的前提下,极大的提升了重建图像的质量。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5