X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[01546995]基于显著性和多尺度深度网络模型的SAR图像分类方法

交易价格: 面议

所属行业: 网络

类型: 非专利

交易方式: 资料待完善

联系人:

所在地:

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

一种基于显著性和多尺度深度网络模型的SAR图像分类方法。其步骤为:读入数据集;获得训练场景图和显著特征图;生成显著性检测训练数据集;生成目标分类训练样本集;构建显著性网络模型;训练显著性网络模型;构建多尺度深度网络模型;构建曲线波Curvelet重构层;生成目标分类网络模型;训练目标分类网络模型;获得显著特征图;对显著特征图进行形态学处理;提取检测切片;对检测切片进行分类;对分类结果进行投票;标记检测与分类结果图。本发明提高了分类准确率和分类速度,本发明可应用于对合成孔径雷达SAR图像的目标准确地进行分类、识别。
一种基于显著性和多尺度深度网络模型的SAR图像分类方法。其步骤为:读入数据集;获得训练场景图和显著特征图;生成显著性检测训练数据集;生成目标分类训练样本集;构建显著性网络模型;训练显著性网络模型;构建多尺度深度网络模型;构建曲线波Curvelet重构层;生成目标分类网络模型;训练目标分类网络模型;获得显著特征图;对显著特征图进行形态学处理;提取检测切片;对检测切片进行分类;对分类结果进行投票;标记检测与分类结果图。本发明提高了分类准确率和分类速度,本发明可应用于对合成孔径雷达SAR图像的目标准确地进行分类、识别。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5