[01532112]基于深度方向波网络的极化SAR图像分类方法
交易价格:
面议
所属行业:
网络
类型:
非专利
交易方式:
资料待完善
联系人:
所在地:
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明公开了一种基于深度方向波网络的极化SAR图像分类方法,本方法实现步骤为:(1)输入极化SAR图像;(2)提取泡利分解特征;(3)构建训练样本特征矩阵;(4)初始化卷积神经网络;(5)训练卷积神经网络;(6)构建测试样本特征矩阵;(7)得到测试样本的类标;(8)计算分类精度;(9)上色;(10)输出上色后的极化SAR图像。本发明将方向滤波器作为卷积神经网络的滤波器,对极化SAR图像进行分类,使得本发明具有很好地保留极化SAR图像的方向信息的优点。
本发明公开了一种基于深度方向波网络的极化SAR图像分类方法,本方法实现步骤为:(1)输入极化SAR图像;(2)提取泡利分解特征;(3)构建训练样本特征矩阵;(4)初始化卷积神经网络;(5)训练卷积神经网络;(6)构建测试样本特征矩阵;(7)得到测试样本的类标;(8)计算分类精度;(9)上色;(10)输出上色后的极化SAR图像。本发明将方向滤波器作为卷积神经网络的滤波器,对极化SAR图像进行分类,使得本发明具有很好地保留极化SAR图像的方向信息的优点。