X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[01349777]基于结构学习和素描特性推理网络的SAR图像分割方法

交易价格: 面议

所属行业: 网络

类型: 非专利

交易方式: 资料待完善

联系人:

所在地:

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明公开了一种基于结构学习和素描特性推理网络的SAR图像分割方法,主要解决现有技术分割SAR图像不准确的问题。其实现步骤是:1.根据SAR图像的素描模型,提取素描图;2.根据SAR图像的素描图,得到区域图,并将区域图映射到SAR图像中,得到SAR图像的混合像素子空间、结构像素子空间和匀质像素子空间;3.对混合像素子空间进行特征学习;4.构造素描特性推理网络并对混合像素子空间进行分割;5.对结构像素子空间和匀质像素子空间依次进行相应的分割;6.合并各个像素空间的分割结果,得到最终分割结果。本发明提高了SAR图像分割的准确性,可用于合成孔径雷达SAR图像的目标检测与识别。
本发明公开了一种基于结构学习和素描特性推理网络的SAR图像分割方法,主要解决现有技术分割SAR图像不准确的问题。其实现步骤是:1.根据SAR图像的素描模型,提取素描图;2.根据SAR图像的素描图,得到区域图,并将区域图映射到SAR图像中,得到SAR图像的混合像素子空间、结构像素子空间和匀质像素子空间;3.对混合像素子空间进行特征学习;4.构造素描特性推理网络并对混合像素子空间进行分割;5.对结构像素子空间和匀质像素子空间依次进行相应的分割;6.合并各个像素空间的分割结果,得到最终分割结果。本发明提高了SAR图像分割的准确性,可用于合成孔径雷达SAR图像的目标检测与识别。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5