X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[01237882]基于递归神经网络的高光谱图像分类方法

交易价格: 面议

所属行业: 网络

类型: 非专利

交易方式: 资料待完善

联系人:

所在地:

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明公开了一种基于递归神经网络的高光谱图像分类方法,主要解决现有方法输入特征判别性较弱,局部空间特征提取不充分的问题,其实现步骤包括:1.提取高光谱图像的空间纹理特征和稀疏表示特征,并对其堆叠组合成低层特征;2.在低层特征上提取样本局部空间序列特征;3.根据局部空间序列特征构建递归神经网络模型,并利用训练样本局部空间序列特征训练递归神经网络模型参数;4.将测试样本局部空间序列特征输入训练好的递归神经网络模型,获得高度抽象的高层语义特征,得到测试样本的类别信息。本发明采用深度学习的方法,提高了高光谱图像分类的正确率,可用于植被调查,灾情监测,地图制作及情报获取。
本发明公开了一种基于递归神经网络的高光谱图像分类方法,主要解决现有方法输入特征判别性较弱,局部空间特征提取不充分的问题,其实现步骤包括:1.提取高光谱图像的空间纹理特征和稀疏表示特征,并对其堆叠组合成低层特征;2.在低层特征上提取样本局部空间序列特征;3.根据局部空间序列特征构建递归神经网络模型,并利用训练样本局部空间序列特征训练递归神经网络模型参数;4.将测试样本局部空间序列特征输入训练好的递归神经网络模型,获得高度抽象的高层语义特征,得到测试样本的类别信息。本发明采用深度学习的方法,提高了高光谱图像分类的正确率,可用于植被调查,灾情监测,地图制作及情报获取。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5