X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们
欢迎来到科易网(仲恺)技术转移协同创新平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[01196597]基于半监督梯形网络的极化SAR图像分类方法

交易价格: 面议

所属行业: 网络

类型: 非专利

交易方式: 资料待完善

联系人:

所在地:

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

一种基于半监督梯形网络的极化SAR图像地分类方法,主要解决现有技术中极化SAR图像特征选取不合理导致分类精度不高和无标记数据信息浪费的问题,充分利用有标记数据和无标记数据。其实现步骤为:(1)输入图像;(2)精致Lee滤波;(3)选取训练样本和测试样本;(4)搭建梯形网络结构;(5)训练梯形网络;(6)对待分类的极化SAR图像分类;(7)计算分类精度;(8)输出结果。本发明在训练网络时采用监督学习与无监督学习相结合的方式,通过重构梯形网络的损失函数,增强了模型的鲁棒性,有效地提高了分类精度,适用于对极化SAR图像进行地物分类。
一种基于半监督梯形网络的极化SAR图像地分类方法,主要解决现有技术中极化SAR图像特征选取不合理导致分类精度不高和无标记数据信息浪费的问题,充分利用有标记数据和无标记数据。其实现步骤为:(1)输入图像;(2)精致Lee滤波;(3)选取训练样本和测试样本;(4)搭建梯形网络结构;(5)训练梯形网络;(6)对待分类的极化SAR图像分类;(7)计算分类精度;(8)输出结果。本发明在训练网络时采用监督学习与无监督学习相结合的方式,通过重构梯形网络的损失函数,增强了模型的鲁棒性,有效地提高了分类精度,适用于对极化SAR图像进行地物分类。

推荐服务:

Copyright © 2015 科易网 版权所有 闽ICP备07063032号-5